[ exact phrase in "" ]

[ including uploaded files ]

ISSUES/LOCATIONS

List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
Get weekly updates

WHAT TO DO
when your community is targeted

RSS

RSS feeds and more

Keep Wind Watch online and independent!

Donate via Paypal

Donate via Stripe

RSS

Add NWW documents to your site (click here)

Wind Watch is a registered educational charity, founded in 2005.

Analysis of near-surface relative humidity in a wind turbine array boundary layer using an instrumented unmanned aerial system and large-eddy simulation 

Author:  | Environment, Meteorology

Abstract:
Simulation and modeling have shown that wind farms have an impact on the near‐surface atmospheric boundary layer as turbulent wakes generated by the turbines enhance vertical mixing. While a few observational data sets that focus on near‐surface temperature changes exist, these studies lack high spatial resolution and neglect the combined effect of these temperature changes with an altered humidity profile. With a large portion of wind farms hosted within an agricultural context, changes to relative humidity can potentially have secondary impacts, such as to the productivity of crops. The goal of this study is to gather high‐resolution in situ field measurements in the wake of a single wind turbine in order to differentially map downstream changes to relative humidity. These measurements, obtained by an instrumented unmanned aerial system, are complemented by numerical experiments conducted using large‐eddy simulation. Observations and numerical results are in good general agreement around a single wind turbine and show that downstream relative humidity is differentially altered in all directions, specifically decreased below the turbine hub height. Large‐eddy simulation is then used to determine the effect of a large 7 × 4 turbine array on the relative humidity distribution in compounding wakes. It is found that the region of relative humidity decrease below the turbine hub height and the region of increase above the hub height both intensify, differentially extend in the lateral directions, and moves lightly upward with downstream distance.

Kevin A. Adkins, Department of Aeronautical Science, Embry‐Riddle Aeronautical University, Daytona Beach, Florida
Adrian Sescu, Department of Aerospace Engineering, Mississippi State University, Mississippi State

Wind Energy. DOI: 10.1002/we.2220

Download original document: “Analysis of near‐surface relative humidity in a wind turbine array boundary layer using an instrumented unmanned aerial system and large‐eddy simulation

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Paypal
(via Paypal)
Donate via Stripe
(via Stripe)

Share:

e-mail X FB LI TG TG Share

Get the Facts
CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

 Follow:

Wind Watch on X Wind Watch on Facebook

Wind Watch on Linked In Wind Watch on Mastodon